Experimental Observations of the Laser Keyhole Welding Process of Aa5182

نویسنده

  • J. Meijer
چکیده

Monitoring systems for the laser keyhole welding process of aluminium Tailor Welded Blanks, are in many cases vital to ensure a certain weld quality. Especially process visualization with camera based systems gives a lot of insight. Although for steel it has already been demonstrated that images can be obtained in real-time from the laser welding process using these cameras based on silicon chips, for aluminium this turns out to be not so easy. The light emitted by the weld plume hides the weld pool from the coaxially mounted camera. In this paper recent experiments are discussed in which a monitoring system is used, that is composed of low cost standard components, to visualize the CW Nd:YAG laser keyhole welding process of AA5182. This monitoring system utilizes a diode laser to illuminate the welding process, combined with an optical interference filter and a CMOS camera. In this way the monitoring system is not overradiated by the optical emissions of the sample material. It proved to be possible to eliminate the influence of the light emitted by the weld plume on the image and to detect the melt pool. Future efforts will focus on visualizing the keyhole in these images.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transport Phenomena and Keyhole Dynamics during Pulsed Laser Welding

Numerical and experimental studies were conducted to investigate the heat transfer, fluid flow, and keyhole dynamics during a pulsed keyhole laser welding. A comprehensive mathematical model has been developed. In the model, the continuum formulation was used to handle solid phase, liquid phase, and mushy zone during melting and solidification processes. The volume-of-fluid method was employed ...

متن کامل

Numerical and Experimental Study of Geometrical Dimensions on Laser-TIG Hybrid Welding of Stainless Steel 1.4418

In this paper, a three-dimensional finite element model has been developed to simulate the laser-TIG hybrid welding (HLAW) of stainless steel 1.4418 with thickness of 4 mm. Transient temperature profile and dimensions of the fusion zone and heat affected zone (HAZ) during welding process are calculatedusing finite element method (FEM) and were solved in the ABAQUS/Standard software.The heat sou...

متن کامل

Numerical and Experimental Study of Geometrical Dimensions on Laser-TIG Hybrid Welding of Stainless Steel 1.4418

In this paper, a three-dimensional finite element model has been developed to simulate the laser-TIG hybrid welding (HLAW) of stainless steel 1.4418 with thickness of 4 mm. Transient temperature profile and dimensions of the fusion zone and heat affected zone (HAZ) during welding process are calculatedusing finite element method (FEM) and were solved in the ABAQUS/Standard software.The heat sou...

متن کامل

Porosity Formation and Prevention in Pulsed Laser Welding

Porosity has been frequently observed in solidified, deep penetration pulsed laser welds. Porosity is detrimental to weld quality. Our previous study shows that porosity formation in laser welding is associated with the weld pool dynamics, keyhole collapse, and solidification processes. The objective of this paper is to use mathematical models to systematically investigate the transport phenome...

متن کامل

Laser Welding of Aluminium Alloy 5083

There are two laser welding mechanisms, keyhole mode and conduction mode. Keyhole welding is widely used because it produces welds with high aspect ratios and narrow heat affected zones. However keyhole welding can be unstable, as the keyhole oscillates and closes intermittently. This intermittent closure causes porosity due to gas entrapment. Conduction welding, on the other hand, is more stab...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005